Elucidating the physiological mechanisms underlying enhanced arsenic hyperaccumulation by glutathione modified superparamagnetic iron oxide nanoparticles in Isatis cappadocica
نویسندگان
چکیده
منابع مشابه
Metabolic adaptations to arsenic-induced oxidative stress in Isatis cappadocica
Arsenic is considered as one of the most important environmental contaminant elements. Some plant species can grow in arsenic contaminated soils and they are able to reduce arsenic toxicity. In this study, a hydroponic experiment was conducted on Isatis cappadocica, a newly-discovered As hyperaccumulator. Accordingly, we conducted this experiment to compare the interaction of effect of arsenic ...
متن کاملWashing effect on superparamagnetic iron oxide nanoparticles.
Much recent research on nanoparticles has occurred in the biomedical area, particularly in the area of superparamagnetic iron oxide nanoparticles (SPIONs); one such area of research is in their use as magnetically directed prodrugs. It has been reported that nanoscale materials exhibit properties different from those of materials in bulk or on a macro scale [1]. Further, an understanding of the...
متن کاملThe effect of arsenic and sodium nitroprusside on the physiological responses and antioxidant enzymes activity of Isatis cappadocica
Arsenic (As) stress, through the creation of oxidative stress, can cause phytotoxicity (e.g. The decrease of growth and chlorophyll content) in plants. Nitric oxide (NO), by promotion of the antioxidant system, plays an important role in reducing heavy metal-induced oxidative stress. In this study, the role of exogenously applied sodium nitroprusside (SNP; a NO donor) on physiological responses...
متن کاملSurfactant free superparamagnetic iron oxide nanoparticles for stable ferrofluids in physiological solutions.
A process is reported to obtain a nanoparticle sol from co-precipitated iron oxide particles without using any surfactant. The sol - a true ferrofluid - is not only stable over a wide range of pH but also in physiological solutions. This is a decisive step towards biomedical applications where nanoparticle agglomeration could so far only be prevented by using unwanted surfactants.
متن کاملGenotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells
Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ecotoxicology and Environmental Safety
سال: 2020
ISSN: 0147-6513
DOI: 10.1016/j.ecoenv.2020.111336